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Examen Propédeutique

1. Machine de Rankine idéale (2.5/10 points)

La machine de Rankine idéale est modélisée par un gaz
parfait satisfaisant les équations d’état usuelles,

U = cnRT et PV = nRT ,

et effectuant le cycle décrit sur la figure ci-contre. La cha-
leur spécifique à pression constante

cP = (c+ 1)nR

est donnée et
∂S(T, P )

∂T
=
cP
T

.

Pour une transformation adiabatique,

PV γ = cste avec γ = 1 +
1

c
.

4

P1

P3

S1 S2

∆S

2

3

Toute autre formule concernant le gaz parfait doit être démontrée. Toutes les réponses doivent être
exprimées en fonction des paramètres suivants : P1, P3, T1, V1, ∆S, n, cP , c, γ.

a) (0.5 point) Déterminer la température T2 à la fin de la transformation isobare 1 → 2. Par la
suite, T2 est supposé connu.

b) (0.5 point) Déterminer le travail du gaz W12 durant cette transformation isobare.

c) (0.5 point) Montrer que la variation d’énergie interne ∆U12 durant cette transformation isobare
est de la forme,

∆U12 = cnRT1

(
exp

(
∆S

cP

)
− 1

)
.

d) (0.5 point) Déterminer le travail du gaz W23 durant la transformation adiabatique 2→ 3.

e) (0.5 point) Esquisser le diagramme PV du cycle de Rankine.
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2. Point d’ébullition d’un mélange idéal (2.5/10 points)

Soit un mélange idéal d’eau (substance A) et de sel (substance B). Pour un tel mélange, le potentiel
chimique de la substance A satisfait la relation

µ
(l)
A = µ

∗(l)
A +RT ln (xA) ,

où µ
∗(l)
A est le potentiel de la substance pure. Dans le cadre de ce modèle, on désire déterminer

comment la température d’ébullition de la solution change avec la concentration xB de sel dans l’eau
(où xA + xB = 1). La phase gazeuse est supposée entièrement constituée de vapeur d’eau.

a) (0.5 point) De quel principe général découle la condition d’équilibre,

µ
(l)
A (T ) = µ

∗(g)
A (T ) ,

où (l) désigne la phase liquide et (g) désigne la phase gazeuse.

b) (0.5 point) Montrer que dans la limite de faible concentration de sel, i.e. xB � 1,

µ
∗(g)
A (T )− µ

∗(l)
A (T ) = −xBRT .

c) (0.5 point) A l’aide de la définition de la fonction thermodynamiqueH, montrer que le potentiel
chimique µ∗ d’une substance pure, son enthalpie molaire h∗ et son entropie molaire s∗ sont liés
par la relation

µ∗ = h∗ − Ts∗ .

d) (0.5 point) Montrer que
− xBRT = ∆H − T∆S ,

où ∆H = h∗(g) − h∗(l) et ∆S = s∗(g) − s∗(l).
e) (0.5 point) On suppose que ∆H et ∆S sont indépendants de la température autour de la

température d’ébullition T ∗ de l’eau pure. Montrer que

T − T ∗ = xB
RT

∆S
,

où T ∗ est la valeur de T lorsque xB = 0 .
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3. Réfrigérateur Peltier (2.5/10 points)

Le dispositif du réfrigérateur Peltier est constitué de deux barreaux (X et Y ) de section A, de
longueur L (illustré ci-dessous) reliés électriquement par des contacts 1, 2, et 3 supposés idéaux (i.e.
conductivité électrique et thermique infinies). Les barreaux sont faits de deux matériaux qui obéissent
aux lois phénoménologiques du transport :

js = −
( κ
T

+ σε2
)
∇T − σε

qe
∇
(
µe + qeV

)
,

jq = −σε∇T − σ

qe
∇
(
µe + qeV

)
,

où js est la densité courant d’entropie, jq est la densité de courant électrique, V est le potentiel
électrostatique, qe et µe sont respectivement la charge électrique et le potentiel chimique des électrons
de conduction. On suppose que la température T est uniforme dans tout le dispositif. Le barreau X
a une conductivité électrique σx et un coefficient Seebeck εx, et le barreau Y a une conductivité σy
et un coefficient Seebeck εy.

a) (1.0 point) Montrer que la densité de courant thermique d’énergie obéit la relation :

jQ = T ε jq .

b) (0.5 point) Déterminer le courant électrique I traversant les deux barreaux en fonction des
paramètres σx, σy, ∆V , L, A.

c) (0.5 point) Calculer le courant de chaleur IQx entrant dans le contact 1.

d) (0.5 point) Déterminer la puissance de refroidissement IQr (i.e. un courant thermique d’énergie
entrant dans le contact 3).
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4. Atmosphère terrestre (2.5/10 points)

On suppose que l’atmosphère terrestre peut être modélisée par un gaz parfait de température uniforme
et composé de molécules de masse m. De plus, on suppose que la gravitation peut être modélisée par
le modèle de la pesanteur, c’est-à-dire que les molécules subissent une force F = mg quelle que soit la
hauteur h au-dessus du sol. Ces hypothèses sont évidemment très discutables, mais elles sont imposées
pour simplifier le problème. On note n (h) la densité de l’atmosphère (i.e. le nombre de molécules par
unité de volume) dont la valeur au sol est n0 = n (h = 0). L’atomsphère satisfait l’équation d’état du
gaz parfait, i.e. P (h) = n (h) kT , où k est la constante de Boltzmann.

a) (1.0 point) La distribution de probabilité de Boltzmann p (h) dh en fonction de la hauteur h est
de la forme,

p (h) dh =
1

Z
exp (− f (h)) dh ,

où Z est la constante de normalisation et f (h) est une fonction de h. Déterminer Z et f (h) en
utilisant le fait que la norme v de la vitesse des molécules et h sont des variables indépendantes,
i.e.

p (v, h) dh dv = p (h) dh p (v) dv .

b) (0.5 point) Pour une colonne de gaz atmosphérique, montrer que

dP (h)

dh
= −mg n (h) ,

en faisant le bilan des forces exercées sur une tranche de cette colonne située entre h et h+ dh.

c) (0.5 point) Déduire l’expression de n (h) de l’équation différentielle pour P (h).

d) (0.5 point) Pour des molécules de gaz de gaz atmosphérique de masse molaireM = 25 [g·mol−1] à
une température telle que RT = 2500 [J], déterminer la hauteur h pour laquelle ln (P/P0) = − 0.1
(prendre g = 10 [m · s−2]).
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